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CHAPTER I

INTRODUCTION AND BACKGROUND

A. TIntroduction

The topic of high-intensity sound propagation has been mostly
limited to sound waves in fluids and solids (see Beyer [lO]*). Very
little has been done in the study of high-intensity sound propagation in
bulk porous materials. Studies of intense sound interaction with per-
forated sheets, thin sheets of porous materials, and Helmholtz resona-
tors have been done (for example, see Refs. 37, 48, 55, 86).

Recently the use of porous materials in jet engine inlets has
increased. At high intensities it has been observed that the impedance
of a porous material changes with sound level, i.e., the material be-
haves nonlinearly. An understanding of sound reflection from and propa-
gation in bulk porous materials has therefore become necessary. In this
study many experiments have been performed on air saturated, fibrous, and
expanded plastic porous materials. The materials have porosities in the
range 0.809<P< 0.985, where P is the porosity (the volume of air per
total volume), The emphasis of this study is on the experimental re-
sults and explanation of these results.

In this investigation a theoretical model for intense sound

propagation in very porous, rigid, air saturated, fibrous bulk ma-

*
References are listed alphabetically by author and referred to by

number at the end of this dissertation.



terials is developed. A separate empirical model is proposed to des-
cribe finite amplitude losses (inexplicable losses in linear theory) in
the porous material. Modeling of the reflection of high intensity

sound waves from the surface of porous materials was also carried out.
The reflection process is very complicated; both resistive and reactive
components can depend upon the particle velocity amplitude of the in-
coming wave. Experimental data obtained from measurements on a variety
of bulk porous materials are used to test the validity and limits of the
theoretical models.

After this introductory section, some background theory is
presented in the remainder of this chapter. First, a brief discussion
of the theories on low intensity sound propagation in porous materials
is used to put the theory of Chapter II in perspective. Second, a brief
summary of high-intensity sound propagation in ordinary fluids is pre-
sented. Third, past work on the reflection of high-intensity sound from
surfaces and thin sheets is described.

In Chapter II a high-intensity sound theory is presented.

The one-dimensional mass, momentum, and internal energy equations for a
nonlinearly behaving bulk porous material are derived. The resulting
equations are solved by perturbation. A single boundary condition is
used. The input signal is assumed to be a sinusoid which is distorted
by a second harmonic component. A mathematical approximation to model
the high-intensity impedance of semi-infinite materials is also pre-
sented. An empirical model is adapted from the nonlinear acoustics of

fluids to help describe the excess attenuation and approach to



saturation® of an intense sine wave in a porous material. The wvarious
theoretical results from Chapter 1I are compared to data in Chapter IV.

In Chapter III the devices and methods used in the experi-
ments are described. The devices are used to determine the porosity,
material structure, flow resistivity, acoustic impedance, and acoustic
propagation parameters (attenuation and phase speed). Data are pre-
sented in Chapter IV,

In Chapter IV the experimentally determined data are compared
to the theoretical results derived in Chapter II. The results of the
porosity and dc flow resistivity measurements are presented and then
used in the theory to predict the acoustical properties of the various
materials. In the linear region the propagation parameter test results
agreed with theoretical predictioﬁs in some cases and disagreed in other
cases. The perturbation theory was found to be a poor predictor of the
data at high intensities, porosities, and nonlinearities. As the
porosity was reduced the agreement between measurements and predictions
was better at higher intensities. The excess attenuation model predicts
the excess attenuation of the fundamental over a large range of sound
intensities, material nonlinearities, and porosities. Results of small-

signal impedance measurements on finite and effectively semi-infinite

*
Saturation occurs when the finite amplitude losses become so large that,

no matter how much energy enters a porous material, only a specific
amount of acoustic energy (saturation level) will arrive at some loca-
tion within the material. The saturation level depends upon the dis-

tance the wave travels, nonlinearity, and small-signal attenuation [81].



materials are presented and, in most cases, agree with theoretical pre-
dictions. Results of high-intensity impedance measurements for effec-
tively semi-infinite materials are presented and compared to the
mathematical approximation presented in Chapter II. The advantages

and problems of each model are discussed.

In Chapter V the investigation of acoustic waves in porous
materials is summarized, conclusions are discussed, and proposals for
future work are presented. The appendices include a theoretical analy-
sis of heat transfer in fibrous porous materials, assembly drawings of

some of the devices discussed in Chapter III, and computer programs.



B. Linear Theory

A review of the various theories of low-intensity propagation
in and impedance of porous materials is presented in this section.
The following discussion is intended to help orient the reader with
respect to the vast literature on porous materials and the present
study. The intent is not to cover all the literature but to give a
general view. High intensity effects are postponed to Section C of
this chapter. The linear theories are arranged in four categories based
on the model used. After discussion, each theory is related to the pres-
ent analysis. The four categories are the scattering model, the capil-
lary tube-fiber motion models, the rigid frame model, and the lumped
element model.

1. Scattering Model

Sound wave scattering from the fibers of the porous material is

an approach that has been employed with varying success. The approach
has the advantage that no empirical constants have to be determined
from measured data. One minor drawback is that the theory is developed
only for very porous fibrous materials.

In 1910 Sewell [72] applied this method to fibrous materials
containing a viscous gas. At that time there were no experimental re-
sults for comparisons. 1In 1970 Kozhin [42-44] reworked Sewell's theory,
but made no comparison with available experiments. These theories yield
predicted attenuations that greatly exceed the attenuations measured in

this study.



In 1970 Attenborough and Walker [3] published a scattering
theory for fibrous materials. They show accurate prediction of the ab-
sorption coefficient at frequencies above 500 Hz, accurate prediction of
the phase speed, and predicted attenuation exceeding measured attenua-
tion at all frequencies. The predicted acoustic impedance is high. The
theory includes both rigid and flexible porous materials. A more de-
tailed discussion is given in Ref. 77.

In 1976 Mechel [53,54] derived a long and complicated scat-
tering theory in which he includes the scattering of viscosity, thermal,
and density waves. He concluded that the theory was not as good a pre-
dictor as some of the empirically related theories, such as Delany and
Bazley's [25] analysis of Zwikker and Kosten's model [88] (discussed
later in this section).

Scattering theory cannot Be used to predict all the acoustical
properties of a fibrous porous material, but in many cases the theory is
adequate. In the present study, which is of high-intensity sound, this
theory is not applicable because of the assumption that particle dis-
placement is small in the porous material. It would be very difficult
to generalize scattering theory to make it apply to high-intensity waves.

2. Capillary Tube-Fiber Motion Models

Two types of models are discussed in this section. They are,
in most cases, intertwined with each other to such a degree that they
cannot be separated. Most of these models include material motion in
the acoustical analysis. The major difference between the models is
the manner in which the viscous and thermal properties of the material

are determined. In one case, the capillary tube model, the viscous and



thermal properties are defined by calculating the acoustical effects of
a large number of adjacent capillary tubes. 1In the other case, the flow
resistance model, the dc flow resistance of the material is used to de-
termine the viscous properties. In both cases, one or more empirical
factors must be included to match the theory to data. The following
review is presented as historically as possible.

The first attempt at theoretical analysis of the acoustical
properties of bulk porous materials was done by Rayleigh in 1883 [66].
He expanded his work in the second volume of his book [67]. Rayleigh
assumed that the porous material could be modeled as an array of packed
capillary tubes with the sound traveling axially along the tubes.

Porous material structures are actually much different from a simple
model of packed capillary tubes. He based his work on Kirchhoff's [41]
theory of viscosity and heat conduction effects on sound waves traveling
in circular tubes made of perfectly rigid and heat conducting walls.
Many others [6,8,11,25,73,74,88] have used Rayleigh's approach as a
basis for analysis and have used complicated schemes to predict experi-
mental data. Some of these theories are discussed here.

Adaptation of Rayleigh's theory (see, for example, Zwikker and
Kosten [88], Beranek [6,8], and Bies [ll]) requires that an empirical
parameter called the structure factor be determined. The definition of
the structure factor depends on the author. The most common definition
of the structure factor is that it 1s a correction for the tortuosity
the sound wave encounters as it travels in the material [6,8,11,88].
Another definition of the structure factor is that it is a correction

for the effective acoustic air density caused by motion of the frame



[11,88]. Although the theories discussed in this section can be tied,
in special cases, to the theory used in the present study, the structure
factor is not used here.

Zwikker and Kosten'[883 have presented the most comprehensive
study of the acoustics of porous materials. They used Rayleigh's basic
theory [67] as a starting place and introduced the structure factor
and frame motion. In turn, their theory has become the starting point
for the rest of the theories discussed in this sub-section.

Beranek [8] started with the equations that Zwikker and Kosten
[88] derived in their analysis. Except for the structure factor,
Beranek's analysis reduces to the rigid material model described in the
next sub-section. Beranek measured the propagation parameters and im-
pedance and, through his analysis, presented results illustrating the
volume coefficient of elasticity of air in the porous material (heat
transfer effects) and the effects of having the sample vibrate in its
holder. A theoretical analysis of heat transfer effects is discussed
in Appendix A of this study. Beranek's measured data show a much smaller
transition region between the two heat transfer states than was deter-
mined here or by others [11,34,88]. In determining the sample vibra-
tioné in its holder, Beranek addressed a problem important to avoid in
the experiments. If the sample holder holds the sample too tightly, or
too loosely, the sample will tend to resonate at low frequencies and
cause the experimental results to be erroneous relative to results de-
termined from properly held materials. The resonance problem was con-
sidered in the present study and the experimental results indicate that

the problem was avoided. Beranek also discussed coupling of acoustic

8



and solid waves, but concluded that, at higher frequencies, the ma-

terial becomes decoupled from the acoustic waves.

Delany and Bazley [25] carried out an extensive empirical study

of the acoustical properties of fibrous porous materials. They norma-
lized their data to the dimensional parameter f/o,* where f is the
frequency in Hertz and ¢ is the flow resistivity in MKS Rayls/meter.

The empirical relations they determined are useful over the specified
range of 0.01<f/0<1.0. The relations are used to calculate the attenua-
tion, phase speed, and impedance. Although not directly applicable to
the present study, the equations are useful in checking measurements
made at low intensities.

Bies [11] reviewed some of the above theories. He also dis-
cussed measurement of flow resistance and porosity. Bies gave an ap-
proximate relation for the structure factor. The discussion was not
limited to fibrous materials. .He presented data on cloths, fibrous
materials, and fiberboard materials.

Most of the above theories account for fiber motion (other
than sample resonance). Lambert's [49] analysis of Zwikker and Kosten's
theory [88] indicates that above 130 Hz the air and frame of Kev1a£® 29
aramid (du Pont de Nemours Company) are "decoupled".+ Because f > 100 Hz

in the present study, we are not concerned with frame motion. Support

* ,

All the symbols are listed together at the beginning of this disserta-
tion.
+Kevlar®29 is a plastic fibrous material that is used extensively in the

present study.



for Lambert's conclusion is given in Chapter IV. Lambert also deter-
mined that the decoupling frequency for Scottfoam (Scott Paper Company)
was at 85 Hz. Scottfoam is a fully reticulated,* expanded polyurethane
foam and is similar to the Scottfelt (Scott Paper Company) used in the
present study. Although Lambert used the material density P = 600 kg/m3
when, in actuality, the density of Scottfoam is P= 1153+32 kg/m3 [89],
the error leads to an error of only 4 Hz in the decoupling frequency.
We conclude from Lambert's analysis that the rigid frame model is appro-
priate for use in this study.

3. Rigid Frame Model

In this section the low-intensity theory that is used as a

basis and reference for the analysis in Chapter II is presented. This

theory is based on the assumptions that (1) the dc flow resistivity can
be used directly in the momentum equation and (2) the material structure
is rigid. The first to use these assumptions were Kihl and Meyer [45].
By using the flow resistivity o, their paper (1932) represents a simpli-
fication of Rayleigh's more complicated treatment. Other authors [23,
30,32,33,68] have used or rediscovered Kihl and Meyer's approach as a
starting place and expanded on it.

Kihl and Meyer used equations equivalent to the linearized
continuity equation

Gp + ._O_J_)(— = 0 3 (1—1)

*
In the process of making a foamed plastic, thin plastic membrances form
between the air cells of the foamed plastic. In a fully reticulated

foam the membranes have all been removed.

10



the linearized momentum equation

E)_B.Ii!_g-.*.p +O—u=0 ’ (1—2)
P x TP

and the equation of state P=c2p to solve for the impedance, attenuation,
and phase speed, where u is the acoustic particle velocity in the x di-
rection, p is the acoustic pressure, 6p is the acoustic density, o is
the ambient density, c is the sound speed, P is the porosity, x is the
distance, t is the time, and the comma denotes differentiation of the
dependent variables with respect to x or t (the independent variables).
In their theoretical analysis Kuhl and Meyer assumed the compressibility
of air in a porous material to be variable. They assumed the adia-
batic sound speed co=/;§;75;; where Y=CP/Cv is the ratio of specific
heats. They reasoned that the compressibility, and thus the density, of
the air could be determined by experiment. In their calculations they
used the standard compressibility of air poci. In Appendix A we assume
a constant density Py We show that, because of heat transfer effects,
the speed of sound is a function of both porosity and frequency. Be-
cause the relation derived in Appendix A is frequency dependent, we use
the isothermal sound speed bo= /5375;.

The above equations may also be combined to obtain a wave

equation [23]

u tt agu t
u - —— + —2 = O . (1_3)
s XX b2 2
(o) Opo
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The use of P as a divisor of u depends upon whether the reference u is
in the material or in the open air (no material). Here, as P decreases
the particle velocity in the material increases. The importance of
using u/P as the effective particle velocity is discussed in Chapter II.
Note that although Eq. I-3 seems to be independent of P, the flow re-
sistivity o 1s actually a function of P.

To solve Eq. I-3, one can assume that a time harmonic wave

=e3(wt—Tx)

where FQB—ja, w=2nf, and j=v-1, propagates in a porous material. The

wave encounters the attenuation

2
-1 fl+ (L) (I-4)
wp
and the wave number
. (I-5)
The phase speed cPH=w/B is
V2 b
. (I-6)

AT

Plots of attenuation and of phase speed versus frequency for several

commonly found resistivity values are shown in Figs. I-1 and I-2,
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respectively. Both the attenuation and phase speed can change dramati-
cally over a relatively small frequency range. These changes are im-
portant in the propagation of intense sound in porous materials. In
porous materials intense sounds do not behave in the same manner as in
open air, which has a low, uniformly varying attenuation (awwz) and only
minor (usually negligible) dispersion,

Kthl and Meyer showed that the specific acoustic impedance in-
ternal to an essentially semi-infinite (aL>>1, where L 1s the sample

length) porous material is

W = wR + JwI (I-7)

where the resistive part is

w pobo / ) 2
= 22 1 1+ -

and the reactive part is

b
o

2
o Jo1 +1+(-Z) . I-9
L T / +V/ +(“’°o) (1-9)

W = -

We see that Eqs. I-4 and I-5 are of equivalent forms to Eqs. I-9 and
1-8, respectively. We conclude that, for the small signal case,
measuring the impedance when al>>1 is equivalent to measuring a and 8.
This comparison proves to be a good check on both the theory and data.
The real and imaginary parts of the impedance are plotted

versus frequency for three flow resistivities in Fig. I-3.
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The general propagation parameter T and impedance W equations

are related to each other by [49,88]

W) = (WR4-ij) coth(a + jB)L . (1I-10)

Fquation I-10 is for finite length (aL< 1) materials mounted on a hard
surface. Equation I-10 1s appropriate for most low-intensity impedance
measurements and is used in the analysis presented in Chapter IV.

When a sound wave traveling in air encounters a porous material
some of the energy of the incident wave is reflected from the material
surface and some is transmitted into the material. The impedance dif-
ference between the air CION and the material W(L) causes the separation
of the incident wave into two parts. The ratio of the transmitted (ab-

sorbed) energy to the incident energy is the absorption coefficient.

(oS ]

(U(L)—poc0
a =1

n W) +poc0 (I-11)

As the transmitted wave travels in the material it is attenuated (Eq. I-
4) by the action of viscous effects. In the present study the term ab-
sorption is used to describe a reflection/transmission process, whereas,
the term attenuation is used to describe the decay of a traveling sound
wave. Absorption coefficients (al>>1) are plotted versus frequency for
three flow resistivities in Fig. I-4.
In Figs. I-1 through I-4 we find that the value of the flow

resistivity affects the acoustical properties of porous materials. Thus,

the importance of determining flow resistivity cannot be overstated. The
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flow resistivity o depends on the material structure. Flow resistivity
may be determined either through acoustical testing or through dc
(steady state) flow resistance testing. Both methods are used in the
present study. At this time, there are no theoretical relations that
can be used to predict o. Several empirical relations [24,33,34,60,78]
have been formulated to predict the flow resistivity of fibrous materials.
Only two relations [33,34] will be discussed in the present study.

By using hydrodynamic analysis, Hersh and Walker [35] deter-
mined a relation between viscosity, porosity, fiber diameter d, and flow

resistivity inside a fibrous porous material with flow perpendicular to

St [“g\/mn—m ]
2

[ - ]3/2 ’ (I-12)
d'g

the fibers,

4(1-P)

where g is an empirical constant. Equation I-12 is used in Chapter IV
to calculate the dc flow resistivity for unmeasured values of o.
Hersh and Walker determined g=0.059 for batted Kevlar 29. They com-
pared data and theory at low frequencies.
For their data-theory comparisons Hersh and Walker derived a
tt

low frequency approximation to Eq. I-3 by ignoring the u term. For
2

a sinusoidal wave they found that the attenuation o and wave number B

a=B= w
Vv 2bp

(o]

were equal to

Q

(I-13)

a N
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For porosities in the range of 0.9<P<0.97, the low frequency approxi-
mation is valid for f<2 kHz. TFor a full frequency range prediction the
constant g must be redefined.

Hersh and Walker [33] showed that o is related to d, u, and P

by

o = 5 h(P) , (I-14)
d

where h(P) is a structurally dependent function of P. For their specific
case the relationship is given by Eq. I-12. 1In dimensionless quantities
Eq. I-l41is

g, = —EL 5 h(P) = h(P)/Re , (1-15)

wd
Py

where Re is an acoustic Reynolds number [5,33]. The value of the acous-
tic Reynolds number is important in our analysis. When Re>>1 the acous-
tic boundary layer is small relative to the fiber size, viscous effects
are unimportant, and Eq. I-12 is not valid. When Re<<l the boundary
layer is large, viscous effects are important, and Eq. I-12 is valid.
For the materials and frequency range used in the present study,
10-33Re523. Most of the experiments were done such that Re<l,

Flow resistance data for many different porous materials have
been presented in several studies. Nichols [60] dealt solely with the
linear flow resistance of fibrous porous materials. He also determined
an empirical relation for fibrous materials. Brown and Bolt [19] pre-
sented data on both linearly and nonlinearly behaving materials and were

the first to plot flow resistance data versus particle velocity on a log-

log plot. Plotting the data in this manner illustrates the relative

20



nonlinearity of the dc flow resistivity (see Chapter IV). Bies and
Hansen [12] present linear flow resistance data for many porous materials.

Only viscous effects are considered in the above theory. The
frequency dependent effects of heat transfer on the compressibility of
the gas in the porous material are ignored. Heat transfer effects
cause the compressibility of the air to be neither adiabatic nor iso-
thermal and, for comparison with data and for simplicity in the calcula-
tions, the limiting values of the adiabatic and isothermal sound speeds
are each used in the low-intensity sound calculations. In the high-
intensity sound calculations, because of increased heat conduction, only
the isothermal sound speed is used. The theory that has been summarized
up to this point will be used as a basis for comparison between the first
order theory developed in Chapter II and the small signal experiment re-
sults presented in Chapter IV,

In 1980 Hersh and Walker [33] extended their 1979 theory [34]
to include heat transfer effects. They used results of experiments on
dc flow through fiber bundles to determine relations to fit equations
for heat transfer and viscosity effects. They obtained a one-dimensional
wave equation that combines both heat transfer and viscosity effects.
There are three empirical constants to fit to the data; one constant
deals with heat transfer and two constants deal with viscosity. The
values of the viscosity constants depend on whether the sound travels
perpendicularly or axially with respect to the fiber orientation. The

wave equation is
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where K is a heat transfer parameter and ¢, is a viscous drag parameter;

H
both parameters are functions of the porosity, fiber size, and their

respective fitted constants. The viscous drag parameter presented by

Hersh and Walker [34] is

4u(1-P
oy = - _“_(?__). (VoD + Dp], (1-17)
where
. 3
D = 16/1-F [1 + 14.75(1-P)7] , (I-18a)
b= 3.0600-P 40+ 2700-P0°T (1-18b)
P

where Vn and Vp are the empirical constants and the subscripts denote
flow parallel (p) to the fibers and flow normal (n) to the fibers. Hersh
and Walker fit Eq. I-18a to dc flow resistance data taken on many dif-
ferent materials by Davies [24]. Davies found very little scatter of
measured data from his own theoretical predictions. Hersh and Walker

fit Eq. I-18b to dc flow resistance data taken on a variety of compact
bundles of parallel fibers by Sullivan [78]. Sullivan also found little
deviation of measured data from his own theoretical predictions. Even
though Daviés and Sullivan found little scattering in their data, the
data fitting constants Vn and VP in Eq. I-17 should be determined for

each material to be used. 1t appears that, since there are two constants,
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the equation may be used for a material made of randomly oriented fibers
[34]. As shown by Hersh and Walker and in Chapter IV, the definition of

oy can be used to define the flow resistivity without including heat

transfer effects.

The heat transfer parameter presented by Hersh and Walker is
21.6vu(1-P) >/ ?[1+3.9401-P)]

K = 5
Prd PTn

’ (I-19)

where Pr=uCp/K is the Prandtl number, ¥ is the thermal conductivity of
the medium, and Tn is an empirical constant. The basis for this
equation was taken from work donme by Masliyah [55] on dc energy and
momentum transfer from cylinders oriented normally to the fluid flow.
The heat transfer effects on the sound speed in Eq. I-19 are similar to
those determined in Appendix A.

The material Hersh and Walker used in their tests is Kevlar 29.
As noted earlier, this material is used in many of the experiments in
the present study. In addition, other materials are used in the present
study and the test results are discussed in Chapter IV.

4, Lumped Element Model

The last linear theory to be considered here was published by
Zarek in 1978 [82]. He considered sound absorption by flexible poly-
urethane foams. He considered materials with and without an impermeable
membrane facing. He approached the theory from a lumped parameter model
for the gas and material and used the results to determine a Lagrangian

that includes Rayleigh dissipation. He then applied Hamilton's
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principle and determined equations of motion for the coupled

air-material system. He stated that the parameters only include the

small scale effects of the porous medium; all nonlinearities of the air

and material are ignored. His theoretical predictions agree well with

his experimental results. Zarek also compared his theoretical pre-
dictions to some of Beranek's [7] data and found fairly good agreement
between the two. Zarek's theory is not useful in the present study because
he considered material motion and he ignored all nonlinearities.

The theories discussed in this section all pertain to the
acoustical properties of the porous materials at low intensities. Many
of the theories include frame motion of the material, but Lambert's
analysis shows that, for the present study, the frame motion is negli-
gible. Neglecting the frame motion greatly simplifies the analysis.

In Chapter I1 we use the conservation equations and show which assump-

tions lead to the rigid frame theory.
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C. Nonlinear Theory

This section contains a presentation of two topics. The first
topic is a brief review of how an intense sound propagates in a fluid
and how absorption and dispersion affect shock formation and attenuation,
The second topic is a brief presentation of the theoretical and experi-
mental studies of intense sound reflected from thin porous sheets.

1. 1Intense Sound in a Fluid

The propagation of an intense sound in a fluid is fairly well
understood. The brief theoretical treatment presented here is based on
extensive work by others and is presented as background to the nonlinear
theory used in Chapter II.

For any point on the waveform the propagation speed will vary
as [10]

dx

dt

fl
[¢]
+

u . (I-20)
u=const

Equation I-20 adds the effect of convection u to the sound speed

=+ /92
c b

where P is the total pressure, s is the entropy, and p is the total

’ (I-21)
S

density. The pressure-density relation is nonlinear, ¢ depends on tem-

perature, and for a simple wave

-1
c=c_ + Y—Z—u . (1-22)
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The propagation speed becomes

dx = c_+8'u , (1-23)

u=const
where B8'=(y+1)/2 is the nonlinearity parameter of air. In the small

signal case, where u<x o

In an isothermal situation, such as in a porous material, y=1 and B'=l
and the nonlinearity of the air is reduced. 1In a porous material the
nonlinear effects are more complicated than suggested here.

Since the propagation speed varies with location on the wave-
form the wave peaks will travel the fastest and the wave troughs the
slowest. The thermal and convective effects are cumulative, the wave-
form distorts as it travels, and, when u is large enough, the compres-
sional phases steepen and form shocks. Distortionof the wave is accom-
plished by the generation of higher frequency harmonic components. All
fluids dissipate energy, the high frequency components are attenuated at
a faster rate than the fundamental component, and, thus, dissipation
limits the distortion of the waveform. By shifting energy to the higher
harmonic components, the fundamental loses energy more rapidly than at
low intensities. The increased loss is called excess attenuation and we
find that the excess attenuation increases with source intensity. Above

a certain source level we find that, no matter how much we increase the
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energy input, the excess attenuation limits the measured level to a
constant. Wecall this constant level the saturationlevel[A,S7,76,81].
The farther a measurement point is from the source the lower the satura-
tion level is at that location. Before the dissipative effects are dis-
cussed, the progressive distortion of the wave is discussed.

In studying shock formation and dissipation in a lossless

fluid, the Fubini solution [16]

*
iL =:£:_Z; Jn(nc )sin n(wt-kx) (1-24)
o no

applies to the region before shocks are formed (o*<l) when the boundary
condition at x=0 is
u(0,t) = uosinwt s (I-25)

where u is the initial particle velocity amplitude, Jn(-) is the nth

order Bessel function, o*=x/x, x=1/B'ek is the shock formation distance,
e=u0/co, k=w/co, and n denotes the nth harmonic.
In the region (0#%*>3) where shocks are well formed and have be-

gun to decay, the Fay solution [16]

2 = 2/6 sin n{(wt-kx) (I-26)

o sinh[n(l+c*)/G]

is applicable, where G=R'ek/a, which is sometimes called the Gol'dberg
number [10]. In the limit, as G»w, Eq. I-26 represents a sawtooth wave.
In this limit the ordinary dissipation 1s small relative to the rate at
which energy is pumped into the higher harmonic components and dissi-

pated in the shocks. Blackstock [16] devised a scheme to combine the two
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solutions, Eqs. I-21 and 1I-23 (G=«), into a third solution such that
the whole region from the boundary to infinity may be explored.

Since G#&e, a perfect sawtooth wave never forms. The Gol'dberg
number indicates the relative importance between distortion and ordinary
dissipation. For a very strong wave, such that B'ek>>a, the shock forms
quickly, approximating a sawtooth, and takes some distance to dissipate.
For weak waves or large viscous dissipation, such that B'ek<<a, a shock

wave will not form.

In 1977 Bj¢rng [14] compared dissipation effects to nonlinear-
ity effects by using both the Gol'dberg number and the Keck and Beyer
[40] perturbation solution of a nonlinear wave equation to study in-
tense sound propagation in a viscous fluid saturated, rigid sediment.
Bjdrng experimentally determined the parameter of acoustic nonlinearity
in fluid-saturated sediments by using Beyer's analysis [9]. Bjdrné
showed in his analysis that the amplitude of the second harmonic com-
ponent could not exceed 1.37%7 of the fundamental components because the
attenuation effects are much larger than the nonlinearity effects.
Bjérnd indicated that, for most high-amplitude sounds, the sound goes
directly from finite-amplitude distortion into the "old age" (the wave-
form is nearly sinusoidal) propagation region. He noted that a shock
wave propagating in a sediment decays rapidly and he concluded that the
nonlinear effects are negligible in viscous fluid saturated sediments.

Determining the nonlinear behavior of a material is important.
If the material behaves very nonlinearly, relative to attenuation, then

harmonics are generated very rapidly. In the present study the dc flow
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resistivity characteristics are used to define both the viscous dissi-
pation and nonlinear properties of the material. Carman [21] stated
that for dc gas flow through porous materials the transition to non-
linear behavior is related to the onset of turbulence and the modified
Reynolds number

=9
Rm TS ’

(1-27)
where v is the kinematic viscosity and S=4(1-P)/d is the surface area/
unit volume. Carman stated that when Rmz 1 the flow resistivity behaves
nonlinearly, i.e., the flow resistivity depends on the particle velocity.
Later in this study we find that the manner in which the nonlinearity is
caused, i.e., turbulence, may be important to how an intense sinusoid
loses energy. We find that the complexities of excess attenuation of a
sinusoid are not as easily defined in a porous material as in an open
fluid. In addition, how the nonlinearity is defined and used becomes
extremely important to how well the effects of nonlinearity are pre-
dicted.

Blackstock [17} presented a perturbation solution for a
Burgers equation governing the propagation of sound in an absorbing,
dispersive fluid. He showed that the dispersive characteristic affects
the level of the generated second harmonic component. This effect has
importance in a porous material. Equation I-7 shows that porous ma-
terials are very dispersive. The harmonic components of intense sounds
generated in a porous material may be greatly affected by the dispersion
because energy added to the components will be added out of phase with

the energy already present,
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Zorumski [84] presented conservation equations for thin sheets
of porous materials with nonlinear dc flow resistance. He used these
equations to determine the scattering of sound from porous elliptic
cylinders. He did not attempt to solve the conservation equations for
the propagation of intense sound in a bulk porous material. His re-
sults are described in the next section,

In this section a very brief review on intense sound prop-
agation through lossless and dissipative fluids has been presented.

These ideas are useful in the analysis and comparisons made in Chapter IV,
2, Reflection of Intense Sound

For all practical purposes, a sound propagating in a porous
material must first enter the material from an adjacent medium. A wave
incident on the surface of a bulk material is reflected from as well as
transmitted into the material. 1In order for us to understand the losses
associated with the transition from one medium to another, we must deter-
mine the impedance of the material. Most materials are acoustically
finite (aL<l) and, as shown in Eq. I-10, the impedance, the propagation
parameters, and the material termination impedance (at x=L) all influence
the measured impedance. At high intensities the analysis becomes dif-
ficult because both the impedance and propagation parameters depend on
intensity. We have just seen that as an intense wave propagates, energy
is transferred to the higher harmonic components. The harmonic components
interact with each other and superposition is no longer valid. When
an intense wave is used to measure reflection (or absorption) properties

of a porous material, the sound level, instead of just frequency, must
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also be specified. Since superposition is not valid, the incident and
reflected waves may influence each other. For short interaction regions
this influence may be small. For large interaction regions, such as in
long pulse trains or standing waves, the mutual influence must be ac-
counted for.

This section contains a review of past studies of the reflec-
tion of intense sound from different surfaces and the determination of
the impedance of sheets of porous materials., Both theoretical and ex-
perimental studies are examined.

In 1960 Blackstock [15] showed that intense sounds reflected
from surfaces do not always follow the commonly used small signal laws.
Blackstock considered a pressure release surface, an infinite impedance
surface (a hard wall), and a thin resistive sheet. Regardless of in-
tensity, reflections from a pressure release surface are accompanied by
a doubling of the particle velocity at the interface. In addition,
Blackstock found that at a hard wall the variational sound speed c is
the variable that doubles throughout the intensity range. The pressure
doubling law for reflection from a hard wall is only an approximation.
However, at a sound pressure level of 174 dB re/20 yPa the deviation
from pressure doubling is only 6%. Above 174 dB pressure amplification
at the wall increases and a more exact relation must be used.

In the case that most interests us here, the thin resistive
sheet, Blackstock found a relation for the pressure reflection coeffi~

cient
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where Pr 1s the reflected pressure, Pi is the incident pressure,
&(z)=Re(z)—poco, z is the specific normal acoustic impedance, Im(z)=0,
e=uo/c0 is the acoustic Mach number of the initial wave, and ¢ is a
specific location on the wave that is followed through the course of
travel of the wave.

Unfortunately, porous materials do not meet the condition that
Im(z)=0. However, the case of purely resistive porous materials is in-
structive. From the analysis results the acoustical characteristics of
the real material may be inferred. Equation I-28 may be used to follow
only one point on the waveform at a time. If the first peak of the sine
wave (compression) is followed as it leaves the piston, sinw$=1.0. In

terms of the real part of the acoustic impedance, the absorption coeffi-

clent is
2 2
2Re(z) | y+l Re(z)
_— + 1—y €
2 Ooco 2y poco
an-1-|R] =1-|1- 5 (1-29)
1+ Re(z) 4 y+1 1-y (Re(z)) .
pc by pC
00 o0

Equation I-29 can be used to calculate the absorption coefficient that

the peak of an initially sinusoidal wave encounters.
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If the minimum of the sine wave (rarefaction) is followed as
it leaves the piston, sinw$¢=-1.0 and the signs of the two £ terms in
Eq. I-29 become negative. This change of sign indicates that the phase
of the wave is important to reflection from purely resistive porous
materials. This statement of phase dependence should hold for any
porous material. For example, when Re(z)/poco=3.0 and €=0.02 (160 dB
re/20 uPa) an=0.763 for sing=1.0 and an=0.738 for siné=-1,0. The dif-
ference increases with increases in Re(z) and ¢.

In the above analysis Re(z) is arbitrary and may be a function
of the particle velocity. If the impedance is a function of the particle
velocity and Im(z)#0, then a_ changes more dramatically than indicated
by Eq. I-29, because both Re(z) and Im(z) affect the value of a .

Zorumski and Parrot [83,86] and Zorumski [84,85] are the only
researchers to present a combined theoretical-experimental analysis of
thin nonlinearly behaving porous materials. The most general presenta-
tion is in Ref. 86. The mathematical and computational details are in
Refs. 84 and 85, respectively. We summarize their general theory, ex-
periments, and results below.

In this theory Zorumski and Parrot present generalized, func-
tional relations for the conservation of mass and momentum. They assume
the material is thin enough that XA >> L, where X\ is the wavelength, and
that the velocity differential across the sample is negligible. They
also assume negligible compressibility in the material. Thus, the con-
servation of mass equation does not enter into their analysis. Their

analysis is based on use of the momentum equation. They assume that the
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particle velocity dependent dc flow resistance can be used to describe
the acoustic flow resistivity R[V(t)], where V(t) is the acoustic
particle velocity. In addition, they assume the acoustic reactance
X[v(t)] is a function of particle velocity. TFrom their version of the

momentum equation they obtain a temporal impedance operator Zt such that

z V(t) = {R[V(t)] + x[v(t)] :—t} V(t) . (1-30)

The temporal impedance operator is evaluated from their experimental
data. They claim the theory can be used to evaluate the impedance en-
countered by any distorted waveform. Their analysis is done for dis-
torted sinusoids. As discussed below, if there is no nonlinear inter-
action between the harmonic components nor between the incident and re-
flected waves, then their claim appears to be valid.

We now discuss Zorumski and Parrot's [83,86] experimental in-
vestigation. They used a standing wave tube with a microphone flush
mounted with the surface of the rigid termination of the tube. They
placed the material at one-fourth wavelength from the rigid termination.
second microphone was placed outside the material surface that was away
from the termination. Tests were done at 0.5, 1.0, 1.25, 2.0, and
4.0 kHz and at sound levels from 120 to 160 dB. They noted, that, be-
cause of the material and second microphone placement, all even harmonic
components of the fundamental were ignored in the experiment and, thus,
in the theory. Ignoring the even hammonic components might lead to

problems because the components may interact with the waves everywhere
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except for in the material. As seen in Eq. I-24 harmonic component gen-
eration from a sinusoid starts by generating all harmonics, and, mainly,
the second harmonic. If all the even harmonics are ignored, then much
of the energy lost by the fundamental is being ignored and measurement
error is being introduced.

Zorumski and Parrot presented several interesting results.
First, they showed that the acoustic flow resistivity is independent of
frequency and closely approximates the dc flow resistance at all par-
ticle velocities. Second, they showed the acoustic reactance to be a
function of both frequency and particle velocity. The theoretical-
experimental results are found to be consistent and in fairly good
agreement over large frequency and sound level ranges,

The above analyses presented by Blackstock and Zorumski and
Parrot show that the analytical and experimental determination of non-
linear porous material impedance is extremely complex. This complexity
has led many researchers to experimentally determine the impedance and
absorption of various materials. Shock tube experiment results [27,35,
79] will not be discussed.

In 1970 Powell and Van Houten [64] used band-limited tone
bursts at frequencies between 500 Hz and 10 kHz to study the absorption
properties of porous material covered resonators. They measured the in-
cident and reflected peak pressures at a single microphone position and
discussed design considerations for the test procedures. The evaluation
of their results is difficult because the exact length and diameter of

their wave tube, or tubes, was not specified. It appears that the tube
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length could have been greater than the shock formation distance at
high frequencies and sound levels. They discuss design criteria for
the optimum tube lengths and diameters, but do not state how, or if, the
criteria were implemented. They analyze the waveform and spectral con-
tent of what appears to be their input waveform to the acoustic driver.
They never indicate what the incident and reflected acoustic waveforms
look like. They did not indicate whether they saw shock formation or if
the acoustic waveform was distorted by the reflecting surface. The tube
length is important because at high intensity, if the tube length is too
long, then the measured absorption coefficient would be incorrect.
Measurement of the absorption coefficient depends on the attenuation of
the traveling wave being constant with sound level change. A wave
traveling in a tube longer than the shock formation distance % ex-
periences different attenuations. The attenuation depends on where the
wave is with respect to X, Before the wave reaches X, the shock is
forming and the attenuation of the fundamental component 1s greater than
tube wall attenuation. After X, the attenuation increases and then,
when x>4X, asymptotically approaches tube wall attenuation [16]. Some
nonlinear attenuation effects can be accounted for in the calibration
measurements, but, as indicated above, the error can grow rapidly and
a short tube is necessary.

In 1973 Melling [55] experimentally and theoretically deter-
mined the impedance of perforated plates and perforated plate resonators
at low and high intensities. He showed how both the real and imaginary

parts of the impedance change with the intensity. He designed a high
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intensity standing wave impedance tube which has a frequency range of
300 to 3250 Hz and upper sound pressure limits of 144 to 159 dB [56].
The system is large and also requires large transducers to generate the
required steady state sound levels. Melling's program is well thought
out and could be useful for evaluating bulk porous absorber character-
istics. Unfortunately, the cost of building a system of this type is
large and this type system was not used in the present study.

In 1980 Nakamura et al. [58] described the absorption of a
small-signal, plane N wave by finite length porous materials. They
showed that the individual Fourier components of the N wave interact
individually with the porous material. If the material is long enough,
one can determine wR and WI and, if it is short enough (al<l), one can
determine o and 8.

In a later paper Nakamura et al. [59] described the reflec-
tion of a plane N wave fromthe end of an open pipe. They showed, as in
their earlier paper, that the low level impedance is predicted by low
level N wave tests, but the high intensity N wave reflections are
drastically modified as the amplitude increases. They stated that their
results show the total reflected energy between zero and 10 kHz to be
approximately invariant with respect to the N wave amplitude. In this
latter paper, they used a much different system in the measurement of
impedance. The large amplitude N wave does not propagate in a linear
fashion and the frequency components interact. They used an algorithm
similar to the algorithm developed by Pestorius [62] to mathematically

propagate the measured incident wave to the pipe termination. They
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modified Pestorius' algorithm to mathematically propagate the measured
reflected wave backward from the microphone to the pipe termination.
After they mathematically propagated both waves to the end of the pipe,
they subtracted the Fourier transform of the reflected waveform from
the Fourier transform of the incident waveform. They used the results
of this subtraction to calculate the pressure reflection coefficient and
the energy reflection coefficient of the open pipe. This method works
because the reflected wave is inverted with respect to the incident
wave and much of the high frequency energy of the incident wave is lost
out the end of the pipe so that no shock exists in the reflected wave,
In fact, by the time the reflected wave reaches the microphone, the wave
does not develop a shock.

If a porous material was placed in the system of Nakamura
et al. [59], the reflected wave would (usually) not invert. A shock
could reform in the reflected wave and the above method could not be
used. Once a shock has formed in a wave the process cannot be mathe-
matically reversed to obtain the original waveform because information
has been irretrievably lost in the shock formation process. The method
devised by Nakamura et al. is limited because it may not be useful
above certain sound levels and requires a computer for the calculations.
For these reasons a more useful method was sought.

In 1981 Kuntz et al. [47] described a simple impedance
measurement method. This method is described in detail in Chapter III

of this study and experimental data is presented in Chapter IV.
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In this section several test methods and theoretical descrip-
tions that show the change of impedance with intensity have been dis-
cussed. The advantages and disadvantages of the different methods have

been discussed and serve as background information for the measurement

methods described in Chapter III.
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D. Summary

Several diverse topics have been considered in this chapter.
In spite of their diversity, the topics are the basis for understanding
the theory and results that follow in the remainder of this study.

Many theories have been developed to explain low-intensity sound prop-
agation in porous materials. In this study, because of the complexity
of the nonlinear acoustics analysis, only the simplest approach is used,
that of using the dc flow resistivity to define the viscous effects in
a rigid porous material [30,32,33,45,68]. The more complicated ap-
proaches that include heat transfer and material motion [8,11,34,49,67,
88] could, conceivably, be used, but the mathematical complications are
prohibitive. 1In most cases, the simple approach is seen to result in
adequate prediction of the acoustical properties.

From the nonlinear acoustic theory for fluids we have shown
that, because of the high dissipation in a porous material, shock waves
will probably not be formed in an intense sound wave. Perturbation of
the éonservation equations is used in Chapter II to describe the prop-
agation of intense waves in bulk porous materials.

Propagation of a wave in the material is not the only aspect of
sound interaction to be considered. The wave must enter the material
and, consequently, a wave incident on the surface of a bulk porous ma-
terial is reflected from as well as transmitted into the material. The
mathematical predictionof the impedance that an incident, high-intensity
sound wave encounters at the surface of a bulk porous material is not a

trivial task. In fact, the task has never been accomplished. 1In this
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study only a simple mathematical approximation to the impedance will be
made.

Because superposition is invalid for intense sound, the
measurement of the impedance of a bulk porous material exposed to an in-
tense sound is also not trivial. Many measurement methods have been
developed to measure the impedance of both bulk and sheet materials.
These methods all show that the acoustic impedance and absorption co-
efficient of a porous material depend on the amplitude and frequency
content of the incident sound wave. Another measurement method is pre-
sented and used here because it appears to circumvent some of the pro-

lems that the other methods do not address.
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IT. THEORY AND MODELING

In Chapter I various theories for sound propagation in
acoustic materials were described. The rationale for modeling porous
materials as rigid materials was presented as a reasonable assumption.

In Sections A through C of this chapter the mass, momentum,
and energy conservation equations are derived for porous materials. The
model is limited to rigid, isotropic, nonlinear, air saturated, bulk
porous materials.

In Section D perturbation is used to determine approximate
solutions to the conservation equations. These solutions are used in an
attempt to predict the manner in which intense sound propagates through
a porous material. Because the measured boundary conditions are not
ideal, an approximate boundary condition is considered. The boundary
radiates both the first and second harmonic components into the
material. The two components can be set to arbitrary amplitudes and
relative phase. A second-order approximation is determined. 1In
Chapter IV the solution is compared to the data.

In addition to sound propagation in the porous material, the
characteristic impedance of the material is important. In Chapter I we
found this problem to be extremely complicated at high intensities.

In Section E an approximation to the impedance relations is made to
determine a useful intensity dependent impedance relation. The results
only apply to sinusoidal waves normally incident on the surface of a

semi-infinite porous material.
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In Section F the approximation of Section E is extended to
illustrate nonlinear propagation of the fundamental component. In
addition, another model is proposed to illustrate the effects of
saturation and excess attenuation on the fundamental component.

In Section G a short summary of the chapter is presented.

In Chapter IV the various models are compared to the data.
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A. Continuity Equation Derivation

The physical concept of how a fluid flows through a porous
material is necessary for us to understand how the flow is distorted
and impeded by the material. The continuity equation derivation is
presented in simple physical arguments so that we may take certain
assumptions for granted in future derivations.

A simplified cross section drawing of a bulk porous material
control volume is shown in Fig. II-1. The structure is made of many
parallel fibers. The control volume is fixed to the rigid structure.
If no structure is present, the particle velocity is represented by u.
When the fluid enters the porous material the velocity is increased by
a factor of the porosity P. The porosity is the volume of the air in
the control volume relative to the total volume (including fibers) of
the control volume. We assume the material to be homogeneous and the
porosity constant in each derivation.

For the derivations we need to know the relation between po-
rosity and the cross sectional area a fluid encounters in a material.
In Fig. II-1 a single "cell" has been drawn such that the four sides
each bisect two fibers. Thus, a quarter of each fiber is enclosed by
the cell. Assume each cell to be of length L along the fibers. The

porosity of the cell is

ﬂdz

- II-1
4DHL ’ ( )

=1

where D and H are defined in Fig. II-1.
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A gas flowing through the material will not have a constant
speed. Thus, the average open area encountered by the gas flow may not
be evaluated at any point in the medium. The open area, as a function
of x, is integrated along the length D of the cell. In doing the in-
tegration we find the same relation for the area as for the porosity,

Eq. ITI-1. We define the average open area to be

= PA -2
Ap P , (II-2)

where A is the cross sectional area of the control volume.

A physical statement of the continuity equation is that

the mass flux across the = the time rate of change of
control volume surface mass in the control volume.

For the one-dimensional system shown in Fig. II-1, the continuity
equation is

u u
o5 Pal_ - o = PAl

- 9P _
P B = = PAaAx , (II-3)

x+Ax

where p is the total density, x is the position, Ax is the control
volume length, and t is the time. A differential form of Eq. II-3 is
found by dividing Eq. II-3 by PAAx and taking the limit as AX goes to

zero. Since both A and P are constant, the continuity equation becomes

8pu) , % _ g (11-4)
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Equation II-4 is used to describe one-dimensional mass flow in a porous
material and is one of the three conservation equations used in

Section D. Except for the porosity term P, Eq. II-4 is the usual con-
tinuity equation for fluids. 1In all future derivations u and P are
combined as u/P because a change in porosity only modifies the particle

velocity in Eq. II-4.
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B. Momentum Equation Derivation

In the following momentum equation derivation a one-
dimensional model is assumed. As discussed in Section II-A, the po-
rosity is included with the particle velocity.

The forces on the control volume fluid are illustrated in

Fig. 1I-2. The conservation of momentum states that

the time rate of change the sum of external X-momentum
of momentum inside the = forces in the x- + inflow
control volume direction (pressure through the
and drag) two end sur-
faces .

For the one-dimensional system shown in Fig. II-2, the momentum

equation is

2 2
Adpu . _ - - u_ u_ (I1I-5)
p at bx PA[X FA x+Ax FAMx + p P2 A[x TP P2 Alx+Ax ’

where P is the total pressure and F is the drag force/unit volume.

Dividing Eq. II-5 by AAx and taking the limit as Ax>0 yilelds

1 _ 1 2
P(pu)’t— P’X 52 (pu ),X F . (11-6)
Rewrite Eq. II-6 as
L u + pu = =P - L u2+ uu _ + puu - F (I11-7)
Pl ot PY ¢ % p2 P x PuY « ,X ’

where, from Eq. II-4, the underlined terms equal zero. The x-direction

momentum equation becomes
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pu ¢ puu X
2 5 = -— -
o+ -2 +P F . (11-8)

Except for the P and F terms, Eq. II-8 is the momentum equation for
inviscid flow in an open fluid.

The drag term F in Eq. II-8 must be evaluated. Fulks
et al. [29] give a derivation of their three-dimensional term which
is equivalent to F. A different approach is used here. By using the
following analysis F can be defined experimentally.

Both the drag and the dc flow resistivity are used to
define dissipation in a porous material. Whereas we have not defined F,
we can measure the flow resistivity and mathematically relate the two
variables. The dc flow resistivity in a porous material is determined
by first forcing a gas through the material at various, known particle
velocities. The pressure drop AP is measured at each particle velocity
u/P. Once these measurements are obtained the dc flow resistivity is

calculated by using [2]

PRac . Pap

1 oL , (1I1-9)

where L is the sample length. The dc flow resistance Rdc is a function

of particle velocity and is fit to the first order equation

[12,19,21,55,88]

—— =0o+n (II-10)
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where the coefficients o and n are fit to the dc flow resistivity data.
The drag term F is defined by noting that if the flow is
steady (dc), then the first and second terms of Eq. I1I-8 equal zero
[86]. The momentum equation becomes
P, = °F . (11-11)

Divide Eq. II-11 by the particle velocity inside the porous material

u/P to determine the dc flow resistivity inside the material

PR P
- _de_pox_ _PE (11-12)
L u u
and
= ulu . (11-13)
F=(o+n P)P

Both Hersh and Walker [33,34] and Zorumski and Parrott [86] have shown
the flow resistivity to be independent of the frequency. Thus, the

coefficients ¢ and n are independent of any time derivatives.
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C. Energy Equation Derivation

In this section the internal energy equation for the fluid in
the porous material is derived for use as the third conservation

equation in the perturbation analysis. As discussed in Section II-A,

the porosity is included with the particle velocity.

The energy transfer in the control volume fluid is illus-

trated in Fig. II-3. The conservation of energy states that

the time rate of net flux of

work/unit time heat
change of energy energy across done by sur- added
inside the con- = the control + face forces on + to the
trol volume volume sur- the fluid fluid.
faces

For the one-dimensional system shown in Fig. II-3 the energy

equation is

Abx 8p(e+u2/2P2) : p(e+u2/2P2)uA _ Q(E+U2/2P2)UA
9t P X P x+Ax
(I1I-14)
+ PgA _ PuA + qA - qA ,
X x+Ax X X+AX

where e is the internal energy/unit mass and q is the heat flux/unit

area. Dividing Eq. II-14 by AAx and taking the limit as Ax>0, yields

2,,52 (Pu)
(e+ul/2P?) - [p(e+up/2P ) ul —% - q (11-15)
,t ’

Equation II-15 is rewritten as

2 Pu
= De , ufp Du X ) :
(e+2P2) [p’t+ (OU).X]+Dt+P(P Dt+P,x) +—5= +aq =0 (II-16)

’
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where the total derivative is

9 u 9

= + =2 11-17
Dt 3t P 3x ( )
The terms in the square brackets of Eq. II-16 equal Eq. II-4, the
continuity equation. The terms in the curly brackets of Eq. II-16

equal-F in Eq. II-8, the momentum equation. The energy equation

becomes
p——De = - + 2 2}1 (I1-18)
Dt qx,x P P

The fluid in the porous material is assumed to be an ideal gas,

which has the properties

P =RpT (11-19)

and

de = CvdT (I1-20)

where R=(y—l)Cv, y=Cp/CV, T is the temperature, and Cp and C, are
the specific heats. By using Eqs. II-19 and II-20, Eq. II-18 is

rewritten as

(-qx x+F—;—> . (I1-21)

. (I1-22)

Dlp—l
RIs
+

}‘c
-
»
|
[e]
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Equation II-22 is used in Eq. II-21 to eliminate the density variable

such that
pp YPu u
—_ -2 = - - = -
e T TP (y-1)( qx,x+FP) . (I1-23)

This form of the energy equation is simplified by noting that the

heat flux 4. is negligible. There are three reasons for ignoring the
heat flux term 9, in Eq. II-23., First, in open air qx is usually ignored
between 20 Hz and 20 kHz, because the relatively long wavelengths and
short oscillation times are not conducive to heat transfer. Second, in
a porous material the wavelength is much longer than the fiber spacing
and the heat cannot flow along the direction of propagation without en-
countering many fibers in a wavelength. The analysis presented in
Appendix A shows that heat transfer effects are localized around the
fibers of the porous material, thus further reducing qx,x' Finally, in
a porous material it can also be assumed that Fu/P>>qx’X and Eq. II-23

is rewritten as

YPu
DP X _ (_hY -
Dt + 3 (y-1) PF . (11-24)

If the heat transfer rate from the fibers to the air is large enough,

the compressions of the air are almost isothermal, y=l, and

pu
Do, _Lx_ -
e t P 0 : (I1-25)

Equation II-25 is the internal energy equation used in the

perturbation analysis that 1s presented in the next section. For
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high intensity sound the rate of heat transfer increases because of
convection and mixing in the air (see Appendix A) and we assume Yxl
for calculation of the acoustic terms of the perturbation analysis.

Equation II-25 leads to the relation b0=¢PO/p0.
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D. Perturbation Analysis

In the last three sections the conservation equations were de-
rived. In this section perturbation analysis is used to solve dimension-
less forms of the conservation equations for a single boundary condition.
The boundary condition is a second harmonic distorted sine wave. Both
components are of arbitrary phase and amplitude. The boundary condition
is used in an attempt to approximate the measured signals which are des-
cribed in Chapter IV.

1. Perturbation of Conservation Equations
In terms of the total derivative, the three conservation

equations derived in Sections A, B, and C are

1D ._2L§ =0

LD, , (11-26)

pDu u u 2

P—Dt_ + P,x = - OF - M (E) = -F , (II-‘27)
and

YPu
EP_ __?_5 = - E
Dt + P ('Y 1) P F . (11-28)

We remind the reader here that, in a porous material, we will assume
isothermal conditions (y=1). For generality and because y=1 is not
exactly true, we use y # 1 to compute the perturbed wave equations
and, in solution of these equations, set y=1.

The measurement results, presented in Chapter IV, show that
the initial waveform is not a pure sinusoid. The microphone is located
some distance from the source (See Chapter III) and the intense sound

distorts as it travels to the microphone. At high intensities, if the
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level of the second harmonic component is large, it can affect the
propagation of the fundamental component [81]. Excess attenuation of
the fundamental component may occur [16,80], but this is a third-order
effect for an initial sinusoid and can be a second order effect for a
second harmonic distorted sinusoid. Because of the mathematical com-
plexities an unsuccessful attempt was made to derive a third-order solu-
tion of an initially sinusoidal wave.

The second harmonic distorted sinusoid boundary condition is
used in an attempt to describe the propagation of intense sound in a
porous material. The boundary condition is used to introduce both the

first and second harmonics at the boundary

p(0,t) = p'(sinwt + b sin 2wt) (1I-29)

and, since we only consider outward traveling waves, p(»,t) =0, where p'
is the fundamental component amplitude and b is the harmonic component
relative amplitude. Because of more higher harmonics present at the
boundary, Eq. II-29 does not accurately describe the conditions at the
first microphone. This inaccurate description appears to be a source
of problems in the Chapter IV data-theory comparisons.

The first step in the analysis is to make the equation

dimensionless. This is done by using the following substitutions:

A=-L’ U=H, H: P

p c 2

o p C

" u, (11-30)
X="T, 1= wt , and € = -
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where we defined the sound speed ¢ as neither adiabatic ¢, mor isother-
mal bo' In the solution of the equations we let c—*bo. The dimension-

less equations are

UA AU
» T P p
2
AU UAU GlU n,u
L EX N AT S (I1-32)
p P p P
and
Ul v 2210 X ( 13)
M +—22 4 X = (v-1) L7 , I1-
TP P D ey
where o; = O/QOw, n, = nc /pow, and Fl = F/pow. The dimensionless
boundary conditions are
n(0,7) = e(sint + bsin2t) = EIm(eJT-+ bejZT) (II-34)

and N(=,t) = 0.
The solution to these nonlinear equations for a wave traveling
in the material can be found through perturbation. Each of the three

dependent variables are expanded in a power series in € as follows [15]

_ 2 3
II= HO + eHl + € H2 + e H3 + ...,
) 3 (I1-35)
U = Uo + EUl + € U2 + £ U3+ . ,
and
A=A + ), + szA + €3A +
o 1 2 3 e
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where Ho-po/c po-lly, UO-O, and AO-l. These expansions are sub
stituted into both the conservation equations and the boundary condi-
tions. The terms multiplied by like powers of e¢" are then combined to
th
give the n™ order equations.

The first-order conservation equations are

U
X . -
Al,r +' P 0o , (I1-36)
U o U
LTy s LX1.4 (11-37)
P 1,x P
and
Ul
n. 4+ -—=X. g, (1I-38)
1t p
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